|
| 1 | +import subprocess |
| 2 | +import os |
| 3 | +from pathlib import Path |
| 4 | +import imageio.v3 as iio |
| 5 | +import re |
| 6 | +from b3d.camera import Intrinsics |
| 7 | +from b3d.pose import Pose |
| 8 | +import numpy as np |
| 9 | +import jax |
| 10 | +import jax.numpy as jnp |
| 11 | + |
| 12 | + |
| 13 | +_DOWNLOAD_BASH_SCRIPT = """#!/bin/bash |
| 14 | +
|
| 15 | +# Check if both sequence and target_folder arguments are provided |
| 16 | +if [ $# -ne 2 ]; then |
| 17 | + echo "Usage: $0 <sequence_url> <target_folder>" |
| 18 | + exit 1 |
| 19 | +fi |
| 20 | +
|
| 21 | +# Assign arguments to variables |
| 22 | +sequence_url=$1 |
| 23 | +target_folder=$2 |
| 24 | +sequence=$(basename $sequence_url) |
| 25 | +
|
| 26 | +echo "Downloading $sequence to $target_folder..." |
| 27 | +
|
| 28 | +# Ensure the target folder exists |
| 29 | +mkdir -p "$target_folder" |
| 30 | +
|
| 31 | +# Download the file using wget |
| 32 | +wget "$sequence_url" -P "$target_folder" |
| 33 | +
|
| 34 | +# Extract the tar.gz file |
| 35 | +tar -xzf "$target_folder/$sequence" -C "$target_folder" |
| 36 | +
|
| 37 | +# Remove the tar.gz file |
| 38 | +rm "$target_folder/$sequence" |
| 39 | +""" |
| 40 | + |
| 41 | + |
| 42 | +class RgbdSlamSequenceData: |
| 43 | + """" |
| 44 | + Helper class to handle RGB-D Sequences from the TUM RGBD SLAM benchmark dataset. |
| 45 | + The dataset can be downloaded from the following link: |
| 46 | + > https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download |
| 47 | + |
| 48 | + Example Usage: |
| 49 | + ``` |
| 50 | + # Grab a sequence URL from set |
| 51 | + # a target folder to store the data |
| 52 | + # > https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download |
| 53 | + sequence_url = "https://cvg.cit.tum.de/rgbd/dataset/freiburg1/rgbd_dataset_freiburg1_xyz.tgz" |
| 54 | + target_folder = "~/workspace/rgbd_slam_dataset_freiburg" |
| 55 | +
|
| 56 | + # Download and extract the sequence data into |
| 57 | + # a new folder under the target folder |
| 58 | + sequence_folder = RgbdSlamSequenceData._download_from_url(sequence_url, target_folder) |
| 59 | + data = RgbdSlamSequenceData(sequence_folder) |
| 60 | +
|
| 61 | + # Get the i'th RGB image |
| 62 | + # Note that rgb, depth, and pose sequences are not synchronized, so the i'th RGB image |
| 63 | + # and the i'th depth image and pose are not guaranteed to be from the same time. |
| 64 | + i = 100 |
| 65 | + rgb = data.get_rgb(i) |
| 66 | +
|
| 67 | + # This returns i'th RGB image and the CLOSEST (in time) available depth image and pose |
| 68 | + rgb, depth, pose = data.get_synced(i) |
| 69 | +
|
| 70 | + # Plot the RGB and depth images side by side |
| 71 | + fig, axs = plt.subplots(1, 3, figsize=(10,5)) |
| 72 | + axs[0].imshow(rgb) |
| 73 | + axs[1].imshow(np.where(depth>0, depth, np.nan)) |
| 74 | + axs[2].imshow(rgb, alpha=1.) |
| 75 | + axs[2].imshow(np.where(depth>0, depth, np.nan), alpha=0.75) |
| 76 | + ``` |
| 77 | + """ |
| 78 | + def __init__(self, path): |
| 79 | + """ |
| 80 | + Args: |
| 81 | + path (str): Path to one ofthe the TUM RGB-D datasets, e.g., |
| 82 | + .../data/rgbd_dataset_freiburg2_desk |
| 83 | + """ |
| 84 | + |
| 85 | + self.path = path |
| 86 | + |
| 87 | + self.gt_data = np.loadtxt(path/"groundtruth.txt", comments='#', dtype = [ |
| 88 | + ('timestamp', 'f8'), |
| 89 | + ('tx', 'f8'), ('ty', 'f8'), ('tz', 'f8'), |
| 90 | + ('qx', 'f8'), ('qy', 'f8'), ('qz', 'f8'), ('qw', 'f8')]) |
| 91 | + |
| 92 | + self.rgb_data = np.loadtxt(path/"rgb.txt", comments='#', dtype=[ |
| 93 | + ("timestamp", 'f8'), ("filename", 'U50')]) |
| 94 | + |
| 95 | + self.depth_data = np.loadtxt(path/"depth.txt", comments='#', dtype=[ |
| 96 | + ("timestamp", 'f8'), ("filename", 'U50')]) |
| 97 | + |
| 98 | + @staticmethod |
| 99 | + def _download_from_url(sequence_url, target_folder): |
| 100 | + |
| 101 | + # Target folder for the sequence data |
| 102 | + sequence_folder = Path(target_folder)/Path(sequence_url).stem |
| 103 | + |
| 104 | + # Check if the target folder exists |
| 105 | + if os.path.exists(sequence_folder): |
| 106 | + print(f"Sequence \n\t\"{Path(sequence_url).stem}\"\nalready exists here \n\t{sequence_folder}") |
| 107 | + return sequence_folder |
| 108 | + |
| 109 | + try: |
| 110 | + # Execute the Bash script using subprocess and pass in the arguments |
| 111 | + print("Downloading and extracting...this might take a minute....") |
| 112 | + result = subprocess.run( |
| 113 | + ['bash', '-c', _DOWNLOAD_BASH_SCRIPT, '_', sequence_url, target_folder], |
| 114 | + check=True, |
| 115 | + text=True, |
| 116 | + capture_output=True |
| 117 | + ) |
| 118 | + |
| 119 | + # Print the output of the script |
| 120 | + print("Script Output:...\n", result.stdout) |
| 121 | + print("Script executed successfully.") |
| 122 | + return sequence_folder |
| 123 | + |
| 124 | + except subprocess.CalledProcessError as e: |
| 125 | + print(f"An error occurred while executing the script: {e}") |
| 126 | + print(f"Error output: {e.stderr}") |
| 127 | + |
| 128 | + def len(self): |
| 129 | + """Returns the number of (RGB) frames in the dataset.""" |
| 130 | + return len(self.rgb_data) |
| 131 | + |
| 132 | + def shape(self): |
| 133 | + """Returns the shape of the RGB images.""" |
| 134 | + return self.get_rgb(0).shape |
| 135 | + |
| 136 | + def get_rgb(self, i): |
| 137 | + """Returns the RGB image at index i.""" |
| 138 | + return iio.imread(self.path/self.rgb_data[i][1]) |
| 139 | + |
| 140 | + def get_depth(self, i): |
| 141 | + """Returns the depth image at index i.""" |
| 142 | + return iio.imread(self.path/self.depth_data[i][1])/5_000 |
| 143 | + |
| 144 | + def get_pose(self, i): |
| 145 | + """Returns the pose at index i.""" |
| 146 | + _, tx, ty, tz, qx, qy, qz, qw = self.gt_data[i] |
| 147 | + return Pose(jnp.array([tx,ty,tz]), jnp.array([qx, qy, qz, qw])) |
| 148 | + |
| 149 | + def get_synced(self, i): |
| 150 | + """Returns the timestamp, RGB, depth image, and pose at index i.""" |
| 151 | + t = self.rgb_data[i]["timestamp"] |
| 152 | + i_pose = np.argmin(np.abs(self.gt_data["timestamp"] - t)) |
| 153 | + i_depth = np.argmin(np.abs(self.depth_data["timestamp"] - t)) |
| 154 | + return self.get_rgb(i), self.get_depth(i_depth), self.get_pose(i_pose) |
| 155 | + |
| 156 | + def get_timestamp(self, i): |
| 157 | + return self.rgb_data[i]["timestamp"] |
| 158 | + |
| 159 | + def __getitem__(self, i): |
| 160 | + """Returns the RGB, depth image, and pose at index i.""" |
| 161 | + return self.get_synced(i) |
| 162 | + |
| 163 | + def get_intrinsics(self, index=0): |
| 164 | + """Returns the camera intrinsics.""" |
| 165 | + # See |
| 166 | + # > https://cvg.cit.tum.de/data/datasets/rgbd-dataset/file_formats#intrinsic_camera_calibration_of_the_kinect |
| 167 | + intr0 = Intrinsics(640, 480, 525.0, 525.0, 319.5, 239.5, 1e-2, 1e-4) |
| 168 | + intr1 = Intrinsics(640, 480, 517.3, 516.5, 318.6, 255.3, 1e-2, 1e-4) |
| 169 | + intr2 = Intrinsics(640, 480, 520.9, 521.0, 325.1, 249.7, 1e-2, 1e-4) |
| 170 | + intr3 = Intrinsics(640, 480, 535.4, 539.2, 320.1, 247.6, 1e-2, 1e-4) |
| 171 | + |
| 172 | + return [intr0, intr1, intr2, intr3][index] |
| 173 | + |
| 174 | + |
| 175 | +def val_from_im(uv, im): |
| 176 | + return im[int(uv[1]), int(uv[0])] |
| 177 | + |
| 178 | + |
| 179 | +vals_from_im = jax.vmap(val_from_im, in_axes=(0, None)) |
| 180 | + |
| 181 | + |
| 182 | +def _extract_number_after_freiburg(input_string): |
| 183 | + match = re.search(r'freiburg(\d+)', input_string) |
| 184 | + if match: |
| 185 | + return int(match.group(1)) |
| 186 | + else: |
| 187 | + return None |
| 188 | + |
| 189 | + |
| 190 | +def _sequence_url_from_sequence_stem(sequence_stem): |
| 191 | + n = _extract_number_after_freiburg(sequence_stem) |
| 192 | + return f"https://cvg.cit.tum.de/rgbd/dataset/freiburg{n}/{sequence_stem}.tgz" |
0 commit comments