diff --git a/docs/sphinx/source/user_guide/index.rst b/docs/sphinx/source/user_guide/index.rst index 77ad210d03..07102a5630 100644 --- a/docs/sphinx/source/user_guide/index.rst +++ b/docs/sphinx/source/user_guide/index.rst @@ -21,6 +21,7 @@ This user guide is an overview and explains some of the key features of pvlib. modeling_topics/pvsystem modeling_topics/modelchain modeling_topics/timetimezones + modeling_topics/spectrum modeling_topics/bifacial modeling_topics/clearsky modeling_topics/weather_data diff --git a/docs/sphinx/source/user_guide/modeling_topics/spectrum.rst b/docs/sphinx/source/user_guide/modeling_topics/spectrum.rst new file mode 100644 index 0000000000..53cbce48df --- /dev/null +++ b/docs/sphinx/source/user_guide/modeling_topics/spectrum.rst @@ -0,0 +1,97 @@ +.. _spectrum_user_guide: + +Spectrum +======== + +The spectrum functionality of pvlib-python includes simulating clear sky +spectral irradiance curves, calculating the spectral mismatch factor for +a range of single-junction PV cell technologies, and other calculations +such as converting between spectral response and EQE, and computing average +photon energy values from spectral irradiance data. + +This user guide page summarizes some of pvlib-python's spectrum-related +capabilities, starting with a summary of spectral mismatch estimation models +available in pvlib-python. + +Spectral mismatch models +------------------------ + +pvlib-python contains several models to estimate the spectral mismatch factor +using atmospheric variables such as air mass, or system and meteorological +data such as spectral response and spectral irradiance. Two separate examples +demonstrating the application of four pvlib-python spectral mismatch models +are also available: :ref:`sphx_glr_gallery_spectrum_spectral_factor.py` and +Reference [1]_, the latter of which also contains downloadable spectral +response and spectral irradiance data. On this page, a comparison of all models +available in pvlib-python is presented. An extended review of a wider range of +models available in the published literature may be found in Reference [2]_. + +The table below summarises the models currently available in pvlib, the inputs +required, cell technologies for which model coefficients have been published, +and references. Note that while most models are validated for specific cell +technologies, the Sandia Array Performance Model (SAPM) and spectral mismatch +calculation are not specific to cell type; the former is validated for a range +of commerical module products. + ++---------------------------------------------------------+----------------------------+-----------------+-----------+ +| Model | Inputs | Cell technology | Reference | ++=========================================================+============================+=================+===========+ +| :py:func:`~pvlib.spectrum.spectral_factor_caballero` | :term:`absolute_airmass`, | CdTe, | | +| | :term:`precipitable_water`,| mono-Si, | | +| | aerosol optical depth | poly-Si, | [3]_ | +| | | aSi, | | +| | | CIGS, | | +| | | Perovskite | | ++---------------------------------------------------------+----------------------------+-----------------+-----------+ +| :py:func:`~pvlib.spectrum.spectral_factor_firstsolar` | :term:`absolute_airmass`, | CdTe, | | +| | :term:`precipitable_water` | poly-Si | [4]_ | ++---------------------------------------------------------+----------------------------+-----------------+-----------+ +| :py:func:`~pvlib.spectrum.spectral_factor_sapm` | :term:`absolute_airmass` | Multiple | [5]_ | ++---------------------------------------------------------+----------------------------+-----------------+-----------+ +| :py:func:`~pvlib.spectrum.spectral_factor_pvspec` | :term:`absolute_airmass`, | CdTe, | | +| | clearsky index | poly-Si, | | +| | | mono-Si, | | +| | | CIGS, | [6]_ | +| | | aSi | | ++---------------------------------------------------------+----------------------------+-----------------+-----------+ +| :py:func:`~pvlib.spectrum.spectral_factor_jrc` | :term:`relative_airmass`, | CdTe, | | +| | clearsky index | poly-Si | [7]_ | ++---------------------------------------------------------+----------------------------+-----------------+-----------+ +| :py:func:`~pvlib.spectrum.calc_spectral_mismatch_field` | spectral response, | Any single | | +| | :term:`spectra` | junction | | ++---------------------------------------------------------+----------------------------+-----------------+-----------+ + + +References +---------- +.. [1] A. Driesse, J. S. Stein, and M. Theristis, "Global horizontal spectral + irradiance and module spectral response measurements: an open dataset + for PV research Sandia National Laboratories, ALbuquerque, NM, USA, Rep. + SAND2023-02045, 2023. Available: + https://datahub.duramat.org/dataset/module-sr-library + +.. [2] R. Daxini and Y. Wu, "Review of methods to account for the solar + spectral influence on photovoltaic device performance," Energy, + vol. 286, p. 129461, Jan. 2024. :doi:`10.1016/j.energy.2023.129461` +.. [3] J. A. Caballero, E. Fernández, M. Theristis, F. Almonacid, and + G. Nofuentes, "Spectral Corrections Based on Air Mass, Aerosol Optical + Depth and Precipitable Water for PV Performance Modeling," IEEE Journal + of Photovoltaics, vol. 8, no. 2, pp. 552–558, Mar. 2018. + :doi:`10.1109/JPHOTOV.2017.2787019` +.. [4] M. Lee and A. Panchula, "Spectral Correction for Photovoltaic Module + Performance Based on Air Mass and Precipitable Water," 2016 IEEE 43rd + Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 2016, + pp. 3696-3699. :doi:`10.1109/PVSC.2016.7749836` +.. [5] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array + Performance Model, Sandia National Laboratories, Albuquerque, NM, USA, + Tech. Rep. SAND2004-3535, Aug. 2004. :doi:`10.2172/919131` +.. [6] S. Pelland, J. Remund, and J. Kleissl, "Development and Testing of the + PVSPEC Model of Photovoltaic Spectral Mismatch Factor," in Proc. 2020 + IEEE 47th Photovoltaic Specialists Conference (PVSC), Calgary, AB, + Canada, 2020, pp. 1–6. :doi:`10.1109/PVSC45281.2020.9300932` +.. [7] H. Thomas, S. Tony, and D. Ewan, “A Simple Model for Estimating the + Influence of Spectrum Variations on PV Performance,” pp. 3385–3389, Nov. + 2009, :doi:10.4229/24THEUPVSEC2009-4AV.3.27 +.. [8] IEC 60904-7:2019, Photovoltaic devices — Part 7: Computation of the + spectral mismatch correction for measurements of photovoltaic devices, + International Electrotechnical Commission, Geneva, Switzerland, 2019. \ No newline at end of file