Skip to content

Commit 822beaa

Browse files
author
Saurabh Tandale
committed
different types of initialization and their effects
1 parent f72c776 commit 822beaa

File tree

3 files changed

+1818
-0
lines changed

3 files changed

+1818
-0
lines changed

Initialization/.ipynb_checkpoints/Initialization-checkpoint.ipynb

+785
Large diffs are not rendered by default.

Initialization/Initialization.ipynb

+785
Large diffs are not rendered by default.

Initialization/Supporting_func.py

+248
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,248 @@
1+
import numpy as np
2+
import matplotlib.pyplot as plt
3+
import h5py
4+
import sklearn
5+
import sklearn.datasets
6+
7+
def sigmoid(x):
8+
"""
9+
Compute the sigmoid of x
10+
11+
Arguments:
12+
x -- A scalar or numpy array of any size.
13+
14+
Return:
15+
s -- sigmoid(x)
16+
"""
17+
s = 1/(1+np.exp(-x))
18+
return s
19+
20+
def relu(x):
21+
"""
22+
Compute the relu of x
23+
24+
Arguments:
25+
x -- A scalar or numpy array of any size.
26+
27+
Return:
28+
s -- relu(x)
29+
"""
30+
s = np.maximum(0,x)
31+
32+
return s
33+
34+
def forward_propagation(X, parameters):
35+
"""
36+
Implements the forward propagation (and computes the loss) presented in Figure 2.
37+
38+
Arguments:
39+
X -- input dataset, of shape (input size, number of examples)
40+
Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
41+
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
42+
W1 -- weight matrix of shape ()
43+
b1 -- bias vector of shape ()
44+
W2 -- weight matrix of shape ()
45+
b2 -- bias vector of shape ()
46+
W3 -- weight matrix of shape ()
47+
b3 -- bias vector of shape ()
48+
49+
Returns:
50+
loss -- the loss function (vanilla logistic loss)
51+
"""
52+
53+
# retrieve parameters
54+
W1 = parameters["W1"]
55+
b1 = parameters["b1"]
56+
W2 = parameters["W2"]
57+
b2 = parameters["b2"]
58+
W3 = parameters["W3"]
59+
b3 = parameters["b3"]
60+
61+
# LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
62+
z1 = np.dot(W1, X) + b1
63+
a1 = relu(z1)
64+
z2 = np.dot(W2, a1) + b2
65+
a2 = relu(z2)
66+
z3 = np.dot(W3, a2) + b3
67+
a3 = sigmoid(z3)
68+
69+
cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)
70+
71+
return a3, cache
72+
73+
def backward_propagation(X, Y, cache):
74+
"""
75+
Implement the backward propagation presented in figure 2.
76+
77+
Arguments:
78+
X -- input dataset, of shape (input size, number of examples)
79+
Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
80+
cache -- cache output from forward_propagation()
81+
82+
Returns:
83+
gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
84+
"""
85+
m = X.shape[1]
86+
(z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache
87+
88+
dz3 = 1./m * (a3 - Y)
89+
dW3 = np.dot(dz3, a2.T)
90+
db3 = np.sum(dz3, axis=1, keepdims = True)
91+
92+
da2 = np.dot(W3.T, dz3)
93+
dz2 = np.multiply(da2, np.int64(a2 > 0))
94+
dW2 = np.dot(dz2, a1.T)
95+
db2 = np.sum(dz2, axis=1, keepdims = True)
96+
97+
da1 = np.dot(W2.T, dz2)
98+
dz1 = np.multiply(da1, np.int64(a1 > 0))
99+
dW1 = np.dot(dz1, X.T)
100+
db1 = np.sum(dz1, axis=1, keepdims = True)
101+
102+
gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,
103+
"da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
104+
"da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}
105+
106+
return gradients
107+
108+
def update_parameters(parameters, grads, learning_rate):
109+
"""
110+
Update parameters using gradient descent
111+
112+
Arguments:
113+
parameters -- python dictionary containing your parameters
114+
grads -- python dictionary containing your gradients, output of n_model_backward
115+
116+
Returns:
117+
parameters -- python dictionary containing your updated parameters
118+
parameters['W' + str(i)] = ...
119+
parameters['b' + str(i)] = ...
120+
"""
121+
122+
L = len(parameters) // 2 # number of layers in the neural networks
123+
124+
# Update rule for each parameter
125+
for k in range(L):
126+
parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)]
127+
parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)]
128+
129+
return parameters
130+
131+
def compute_loss(a3, Y):
132+
133+
"""
134+
Implement the loss function
135+
136+
Arguments:
137+
a3 -- post-activation, output of forward propagation
138+
Y -- "true" labels vector, same shape as a3
139+
140+
Returns:
141+
loss - value of the loss function
142+
"""
143+
144+
m = Y.shape[1]
145+
logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
146+
loss = 1./m * np.nansum(logprobs)
147+
148+
return loss
149+
150+
def load_cat_dataset():
151+
train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
152+
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
153+
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
154+
155+
test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
156+
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
157+
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
158+
159+
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
160+
161+
train_set_y = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
162+
test_set_y = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
163+
164+
train_set_x_orig = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
165+
test_set_x_orig = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
166+
167+
train_set_x = train_set_x_orig/255
168+
test_set_x = test_set_x_orig/255
169+
170+
return train_set_x, train_set_y, test_set_x, test_set_y, classes
171+
172+
173+
def predict(X, y, parameters):
174+
"""
175+
This function is used to predict the results of a n-layer neural network.
176+
177+
Arguments:
178+
X -- data set of examples you would like to label
179+
parameters -- parameters of the trained model
180+
181+
Returns:
182+
p -- predictions for the given dataset X
183+
"""
184+
185+
m = X.shape[1]
186+
p = np.zeros((1,m), dtype = np.int)
187+
188+
# Forward propagation
189+
a3, caches = forward_propagation(X, parameters)
190+
191+
# convert probas to 0/1 predictions
192+
for i in range(0, a3.shape[1]):
193+
if a3[0,i] > 0.5:
194+
p[0,i] = 1
195+
else:
196+
p[0,i] = 0
197+
198+
# print results
199+
print("Accuracy: " + str(np.mean((p[0,:] == y[0,:]))))
200+
201+
return p
202+
203+
def plot_decision_boundary(model, X, y):
204+
# Set min and max values and give it some padding
205+
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
206+
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
207+
h = 0.01
208+
# Generate a grid of points with distance h between them
209+
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
210+
# Predict the function value for the whole grid
211+
Z = model(np.c_[xx.ravel(), yy.ravel()])
212+
Z = Z.reshape(xx.shape)
213+
# Plot the contour and training examples
214+
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
215+
plt.ylabel('x2')
216+
plt.xlabel('x1')
217+
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
218+
plt.show()
219+
220+
def predict_dec(parameters, X):
221+
"""
222+
Used for plotting decision boundary.
223+
224+
Arguments:
225+
parameters -- python dictionary containing your parameters
226+
X -- input data of size (m, K)
227+
228+
Returns
229+
predictions -- vector of predictions of our model (red: 0 / blue: 1)
230+
"""
231+
232+
# Predict using forward propagation and a classification threshold of 0.5
233+
a3, cache = forward_propagation(X, parameters)
234+
predictions = (a3>0.5)
235+
return predictions
236+
237+
def load_dataset():
238+
np.random.seed(1)
239+
train_X, train_Y = sklearn.datasets.make_circles(n_samples=300, noise=.05)
240+
np.random.seed(2)
241+
test_X, test_Y = sklearn.datasets.make_circles(n_samples=100, noise=.05)
242+
# Visualize the data
243+
plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y, s=40, cmap=plt.cm.Spectral);
244+
train_X = train_X.T
245+
train_Y = train_Y.reshape((1, train_Y.shape[0]))
246+
test_X = test_X.T
247+
test_Y = test_Y.reshape((1, test_Y.shape[0]))
248+
return train_X, train_Y, test_X, test_Y

0 commit comments

Comments
 (0)