|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | + |
| 4 | + |
| 5 | +class Inception(nn.Module): |
| 6 | + def __init__(self, in_planes, kernel_1_out, kernel_3_in, kernel_3_out, kernel_5_in, kernel_5_out, pool_planes): |
| 7 | + super(Inception, self).__init__() |
| 8 | + # 1x1 conv branch |
| 9 | + self.b1 = nn.Sequential( |
| 10 | + nn.Conv2d(in_planes, kernel_1_out, kernel_size=1), |
| 11 | + nn.BatchNorm2d(kernel_1_out), |
| 12 | + nn.ReLU(True), |
| 13 | + ) |
| 14 | + |
| 15 | + # 1x1 conv -> 3x3 conv branch |
| 16 | + self.b2 = nn.Sequential( |
| 17 | + nn.Conv2d(in_planes, kernel_3_in, kernel_size=1), |
| 18 | + nn.BatchNorm2d(kernel_3_in), |
| 19 | + nn.ReLU(True), |
| 20 | + nn.Conv2d(kernel_3_in, kernel_3_out, kernel_size=3, padding=1), |
| 21 | + nn.BatchNorm2d(kernel_3_out), |
| 22 | + nn.ReLU(True), |
| 23 | + ) |
| 24 | + |
| 25 | + # 1x1 conv -> 5x5 conv branch |
| 26 | + self.b3 = nn.Sequential( |
| 27 | + nn.Conv2d(in_planes, kernel_5_in, kernel_size=1), |
| 28 | + nn.BatchNorm2d(kernel_5_in), |
| 29 | + nn.ReLU(True), |
| 30 | + nn.Conv2d(kernel_5_in, kernel_5_out, kernel_size=3, padding=1), |
| 31 | + nn.BatchNorm2d(kernel_5_out), |
| 32 | + nn.ReLU(True), |
| 33 | + nn.Conv2d(kernel_5_out, kernel_5_out, kernel_size=3, padding=1), |
| 34 | + nn.BatchNorm2d(kernel_5_out), |
| 35 | + nn.ReLU(True), |
| 36 | + ) |
| 37 | + |
| 38 | + # 3x3 pool -> 1x1 conv branch |
| 39 | + self.b4 = nn.Sequential( |
| 40 | + nn.MaxPool2d(3, stride=1, padding=1), |
| 41 | + nn.Conv2d(in_planes, pool_planes, kernel_size=1), |
| 42 | + nn.BatchNorm2d(pool_planes), |
| 43 | + nn.ReLU(True), |
| 44 | + ) |
| 45 | + |
| 46 | + def forward(self, x): |
| 47 | + y1 = self.b1(x) |
| 48 | + y2 = self.b2(x) |
| 49 | + y3 = self.b3(x) |
| 50 | + y4 = self.b4(x) |
| 51 | + return torch.cat([y1,y2,y3,y4], 1) |
| 52 | + |
| 53 | + |
| 54 | +class GoogLeNet(nn.Module): |
| 55 | + def __init__(self): |
| 56 | + super(GoogLeNet, self).__init__() |
| 57 | + self.pre_layers = nn.Sequential( |
| 58 | + nn.Conv2d(3, 192, kernel_size=3, padding=1), |
| 59 | + nn.BatchNorm2d(192), |
| 60 | + nn.ReLU(True), |
| 61 | + ) |
| 62 | + |
| 63 | + self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) |
| 64 | + self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) |
| 65 | + |
| 66 | + self.max_pool = nn.MaxPool2d(3, stride=2, padding=1) |
| 67 | + |
| 68 | + self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) |
| 69 | + self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) |
| 70 | + self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) |
| 71 | + self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) |
| 72 | + self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) |
| 73 | + |
| 74 | + self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) |
| 75 | + self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) |
| 76 | + |
| 77 | + self.avgpool = nn.AvgPool2d(8, stride=1) |
| 78 | + self.linear = nn.Linear(1024, 10) |
| 79 | + |
| 80 | + def forward(self, x): |
| 81 | + out = self.pre_layers(x) |
| 82 | + out = self.a3(out) |
| 83 | + out = self.b3(out) |
| 84 | + out = self.max_pool(out) |
| 85 | + out = self.a4(out) |
| 86 | + out = self.b4(out) |
| 87 | + out = self.c4(out) |
| 88 | + out = self.d4(out) |
| 89 | + out = self.e4(out) |
| 90 | + out = self.max_pool(out) |
| 91 | + out = self.a5(out) |
| 92 | + out = self.b5(out) |
| 93 | + out = self.avgpool(out) |
| 94 | + out = out.view(out.size(0), -1) |
| 95 | + out = self.linear(out) |
| 96 | + return out |
0 commit comments