|
| 1 | +# Copyright 2020 The ElasticDL Authors. All rights reserved. |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# |
| 6 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 7 | +# |
| 8 | +# Unless required by applicable law or agreed to in writing, software |
| 9 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 10 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 11 | +# See the License for the specific language governing permissions and |
| 12 | +# limitations under the License. |
| 13 | + |
| 14 | +""" |
| 15 | +Download the mnist dataset from |
| 16 | +https://s3.amazonaws.com/fast-ai-imageclas/mnist_png.tgz |
| 17 | +and then untar it into ${data_store_dir}. Using minikube, we can use the |
| 18 | +following command to submit a training job with the script. |
| 19 | +
|
| 20 | +elasticdl train \ |
| 21 | + --image_name=elasticdl:pt_mnist_allreduce \ |
| 22 | + --job_command="python -m model_zoo.mnist.mnist_pytorch_custom_dataset \ |
| 23 | + --training_data=/local_data/mnist_png/training \ |
| 24 | + --validation_data=/local_data/mnist_png/testing" \ |
| 25 | + --num_minibatches_per_task=2 \ |
| 26 | + --num_workers=2 \ |
| 27 | + --worker_pod_priority=0.5 \ |
| 28 | + --master_resource_request="cpu=0.2,memory=1024Mi" \ |
| 29 | + --master_resource_limit="cpu=1,memory=2048Mi" \ |
| 30 | + --worker_resource_request="cpu=0.3,memory=1024Mi" \ |
| 31 | + --worker_resource_limit="cpu=1,memory=2048Mi" \ |
| 32 | + --envs="USE_TORCH=true,HOROVOD_GLOO_TIMEOUT_SECONDS=60,PYTHONUNBUFFERED=0" \ |
| 33 | + --job_name=test-mnist-allreduce \ |
| 34 | + --image_pull_policy=Never \ |
| 35 | + --volume="host_path=${data_store_dir},mount_path=/local_data" \ |
| 36 | + --custom_training_loop=true \ |
| 37 | + --distribution_strategy=AllreduceStrategy \ |
| 38 | +""" |
| 39 | + |
| 40 | +import argparse |
| 41 | +import sys |
| 42 | + |
| 43 | +import cv2 |
| 44 | +import numpy as np |
| 45 | +import torch |
| 46 | +import torch.nn as nn |
| 47 | +import torch.nn.functional as F |
| 48 | +import torch.optim as optim |
| 49 | +import torchvision |
| 50 | +from torch.optim.lr_scheduler import StepLR |
| 51 | +from torch.utils.data import DataLoader, Dataset |
| 52 | + |
| 53 | +from elasticai_api.pytorch.controller import create_elastic_controller |
| 54 | +from elasticai_api.pytorch.optimizer import DistributedOptimizer |
| 55 | + |
| 56 | + |
| 57 | +class ElasticDataset(Dataset): |
| 58 | + def __init__(self, images, data_shard_service=None): |
| 59 | + """The dataset supports elastic training. |
| 60 | +
|
| 61 | + Args: |
| 62 | + images: A list with tuples like (image_path, label_index). |
| 63 | + For example, we can use `torchvision.datasets.ImageFolder` |
| 64 | + to get the list. |
| 65 | + data_shard_service: If we want to use elastic training, we |
| 66 | + need to use the `data_shard_service` of the elastic controller |
| 67 | + in elasticai_api. |
| 68 | + """ |
| 69 | + self.data_shard_service = data_shard_service |
| 70 | + self._images = images |
| 71 | + |
| 72 | + def __len__(self): |
| 73 | + if self.data_shard_service: |
| 74 | + # Set the maxsize because the size of dataset is not fixed |
| 75 | + # when using dynamic sharding |
| 76 | + return sys.maxsize |
| 77 | + else: |
| 78 | + return len(self._images) |
| 79 | + |
| 80 | + def __getitem__(self, index): |
| 81 | + if self.data_shard_service: |
| 82 | + index = self.data_shard_service.fetch_record_index() |
| 83 | + return self.read_image(index) |
| 84 | + else: |
| 85 | + return self.read_image(index) |
| 86 | + |
| 87 | + def read_image(self, index): |
| 88 | + image_path, label = self._images[index] |
| 89 | + image = cv2.imread(image_path) |
| 90 | + image = np.array(image / 255.0, np.float32) |
| 91 | + image = image.reshape(3, 28, 28) |
| 92 | + return image, label |
| 93 | + |
| 94 | + |
| 95 | +class Net(nn.Module): |
| 96 | + def __init__(self): |
| 97 | + super(Net, self).__init__() |
| 98 | + self.conv1 = nn.Conv2d(3, 32, 3, 1) |
| 99 | + self.conv2 = nn.Conv2d(32, 64, 3, 1) |
| 100 | + self.dropout1 = nn.Dropout(0.25) |
| 101 | + self.dropout2 = nn.Dropout(0.5) |
| 102 | + self.fc1 = nn.Linear(9216, 128) |
| 103 | + self.fc2 = nn.Linear(128, 10) |
| 104 | + |
| 105 | + def forward(self, x): |
| 106 | + x = self.conv1(x) |
| 107 | + x = F.relu(x) |
| 108 | + x = self.conv2(x) |
| 109 | + x = F.relu(x) |
| 110 | + x = F.max_pool2d(x, 2) |
| 111 | + x = self.dropout1(x) |
| 112 | + x = torch.flatten(x, 1) |
| 113 | + x = self.fc1(x) |
| 114 | + x = F.relu(x) |
| 115 | + x = self.dropout2(x) |
| 116 | + x = self.fc2(x) |
| 117 | + output = F.log_softmax(x, dim=1) |
| 118 | + return output |
| 119 | + |
| 120 | + |
| 121 | +def train(args): |
| 122 | + """ The function to run the training loop. |
| 123 | + Args: |
| 124 | + dataset: The dataset is provided by ElasticDL for the elastic training. |
| 125 | + Now, the dataset if tf.data.Dataset and we need to convert |
| 126 | + the data in dataset to torch.tensor. Later, ElasticDL will |
| 127 | + pass a torch.utils.data.DataLoader. |
| 128 | + elastic_controller: The controller for elastic training. |
| 129 | + """ |
| 130 | + use_cuda = not args.no_cuda and torch.cuda.is_available() |
| 131 | + device = torch.device("cuda" if use_cuda else "cpu") |
| 132 | + train_data = torchvision.datasets.ImageFolder(args.training_data) |
| 133 | + test_data = torchvision.datasets.ImageFolder(args.validation_data) |
| 134 | + batch_num_per_epoch = int(len(train_data.imgs) / args.batch_size) |
| 135 | + |
| 136 | + allreduce_controller = create_elastic_controller( |
| 137 | + batch_size=args.batch_size, |
| 138 | + dataset_size=len(train_data.imgs), |
| 139 | + num_epochs=args.num_epochs, |
| 140 | + shuffle=True, |
| 141 | + ) |
| 142 | + train_dataset = ElasticDataset( |
| 143 | + train_data.imgs, allreduce_controller.data_shard_service |
| 144 | + ) |
| 145 | + train_loader = DataLoader( |
| 146 | + dataset=train_dataset, batch_size=args.batch_size, num_workers=2 |
| 147 | + ) |
| 148 | + |
| 149 | + test_dataset = ElasticDataset(test_data.imgs) |
| 150 | + test_loader = DataLoader( |
| 151 | + dataset=test_dataset, batch_size=args.batch_size, num_workers=2 |
| 152 | + ) |
| 153 | + |
| 154 | + model = Net() |
| 155 | + optimizer = optim.SGD(model.parameters(), lr=args.learning_rate) |
| 156 | + optimizer = DistributedOptimizer(optimizer, fixed_global_batch_size=True) |
| 157 | + scheduler = StepLR(optimizer, step_size=1, gamma=0.5) |
| 158 | + |
| 159 | + # Set the model and optimizer to broadcast. |
| 160 | + allreduce_controller.set_broadcast_model(model) |
| 161 | + allreduce_controller.set_broadcast_optimizer(optimizer) |
| 162 | + epoch = 0 |
| 163 | + # Use the elastic function to wrap the training function with a batch. |
| 164 | + elastic_train_one_batch = allreduce_controller.elastic_run(train_one_batch) |
| 165 | + with allreduce_controller.scope(): |
| 166 | + for batch_idx, (data, target) in enumerate(train_loader): |
| 167 | + model.train() |
| 168 | + target = target.type(torch.LongTensor) |
| 169 | + data, target = data.to(device), target.to(device) |
| 170 | + loss = elastic_train_one_batch(model, optimizer, data, target) |
| 171 | + print("loss = {}, step = {}".format(loss, batch_idx)) |
| 172 | + new_epoch = int( |
| 173 | + allreduce_controller.global_completed_batch_num |
| 174 | + / batch_num_per_epoch |
| 175 | + ) |
| 176 | + if new_epoch > epoch: |
| 177 | + epoch = new_epoch |
| 178 | + # Set epoch of the scheduler |
| 179 | + scheduler.last_epoch = epoch - 1 |
| 180 | + scheduler.step() |
| 181 | + test(model, device, test_loader) |
| 182 | + |
| 183 | + |
| 184 | +def train_one_batch(model, optimizer, data, target): |
| 185 | + optimizer.zero_grad() |
| 186 | + output = model(data) |
| 187 | + loss = F.nll_loss(output, target) |
| 188 | + loss.backward() |
| 189 | + optimizer.step() |
| 190 | + return loss |
| 191 | + |
| 192 | + |
| 193 | +def test(model, device, test_loader): |
| 194 | + model.eval() |
| 195 | + test_loss = 0 |
| 196 | + correct = 0 |
| 197 | + with torch.no_grad(): |
| 198 | + for data, target in test_loader: |
| 199 | + data, target = data.to(device), target.to(device) |
| 200 | + output = model(data) |
| 201 | + test_loss += F.nll_loss( |
| 202 | + output, target, reduction="sum" |
| 203 | + ).item() # sum up batch loss |
| 204 | + pred = output.argmax( |
| 205 | + dim=1, keepdim=True |
| 206 | + ) # get the index of the max log-probability |
| 207 | + correct += pred.eq(target.view_as(pred)).sum().item() |
| 208 | + |
| 209 | + test_loss /= len(test_loader.dataset) |
| 210 | + |
| 211 | + print( |
| 212 | + "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format( |
| 213 | + test_loss, |
| 214 | + correct, |
| 215 | + len(test_loader.dataset), |
| 216 | + 100.0 * correct / len(test_loader.dataset), |
| 217 | + ) |
| 218 | + ) |
| 219 | + |
| 220 | + |
| 221 | +def arg_parser(): |
| 222 | + parser = argparse.ArgumentParser(description="Process training parameters") |
| 223 | + parser.add_argument("--batch_size", type=int, default=64, required=False) |
| 224 | + parser.add_argument("--num_epochs", type=int, default=1, required=False) |
| 225 | + parser.add_argument( |
| 226 | + "--learning_rate", type=float, default=0.1, required=False |
| 227 | + ) |
| 228 | + parser.add_argument( |
| 229 | + "--no-cuda", |
| 230 | + action="store_true", |
| 231 | + default=False, |
| 232 | + help="disable CUDA training", |
| 233 | + ) |
| 234 | + parser.add_argument("--training_data", type=str, required=True) |
| 235 | + parser.add_argument( |
| 236 | + "--validation_data", type=str, default="", required=False |
| 237 | + ) |
| 238 | + return parser |
| 239 | + |
| 240 | + |
| 241 | +if __name__ == "__main__": |
| 242 | + parser = arg_parser() |
| 243 | + args = parser.parse_args() |
| 244 | + train(args) |
0 commit comments