Given a pre-trained word-embedding models like Word2Vec, a classifier based on cosine similarities can be built, which is :class:`shorttext.classifiers.SumEmbeddedVecClassifier`. In training the data, the embedded vectors in every word in that class are averaged. The score for a given text to each class is the cosine similarity between the averaged vector of the given text and the precalculated vector of that class.
A pre-trained Google Word2Vec model can be downloaded here.
See: :doc:`tutorial_wordembed` .
Import the package:
>>> import shorttext
To load the Word2Vec model,
>>> from shorttext.utils import load_word2vec_model
>>> wvmodel = load_word2vec_model('/path/to/GoogleNews-vectors-negative300.bin.gz')
Then we load a set of data:
>>> nihtraindata = shorttext.data.nihreports(sample_size=None)
Then initialize the classifier:
>>> classifier = shorttext.classifiers.SumEmbeddedVecClassifier(wvmodel) # for Google model, the vector size is 300 (default: 100)
>>> classifier.train(nihtraindata)
This classifier takes relatively little time to train compared with others in this package. Then we can perform classification:
>>> classifier.score('bioinformatics')
Or the result can be sorted and only the five top-scored results are displayed:
>>> sorted(classifier.score('stem cell research').items(), key=lambda item: item[1], reverse=True)[:5]
[('NIGMS', 0.44962596182682935),
('NIAID', 0.4494126990050461),
('NINDS', 0.43435236806719524),
('NIDCR', 0.43042338197002483),
('NHGRI', 0.42878346869968731)]
>>> sorted(classifier.score('bioinformatics').items(), key=lambda item: item[1], reverse=True)[:5]
[('NHGRI', 0.54200061864847038),
('NCATS', 0.49097267547279988),
('NIGMS', 0.47818129591411118),
('CIT', 0.46874987052158501),
('NLM', 0.46869259072562974)]
>>> sorted(classifier.score('cancer immunotherapy').items(), key=lambda item: item[1], reverse=True)[:5]
[('NCI', 0.53734097785976076),
('NIAID', 0.50616582142027433),
('NIDCR', 0.48596330887674788),
('NIDDK', 0.46875755765903215),
('NCCAM', 0.4642233792198418)]
The trained model can be saved:
>>> classifier.save_compact_model('/path/to/sumvec_nihdata_model.bin')
And with the same pre-trained Word2Vec model, this classifier can be loaded:
>>> classifier2 = shorttext.classifiers.load_sumword2vec_classifier(wvmodel, '/path/to/sumvec_nihdata_model.bin')
.. autoclass:: shorttext.classifiers.embed.sumvec.SumEmbedVecClassification.SumEmbeddedVecClassifier :members:
In previous versions of shorttext, :class:`shorttext.classifiers.SumEmbeddedVecClassifier` has a savemodel method, which runs as follow:
>>> classifier.savemodel('/path/to/nihdata')
This produces the following file for this model:
/path/to/nihdata_embedvecdict.pkl
It can be loaded by:
>>> classifier2 = shorttext.classifiers.load_sumword2vec_classifier(wvmodel, '/path/to/nihdata', compact=False)
Michael Czerny, "Modern Methods for Sentiment Analysis," *District Data Labs (2015). [DistrictDataLabs]
Home: :doc:`index`