-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathDBDH.py
130 lines (99 loc) · 4.17 KB
/
DBDH.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from utils.tools import *
from network import *
import os
import torch
import torch.optim as optim
import time
import numpy as np
torch.multiprocessing.set_sharing_strategy('file_system')
# DBDH(Neurocomputing2020)
# paper [Deep balanced discrete hashing for image retrieval](https://www.sciencedirect.com/science/article/abs/pii/S0925231220306032)
# [DBDH] epoch:150, bit:48, dataset:cifar10-1, MAP:0.792, Best MAP: 0.793
# [DBDH] epoch:80, bit:48, dataset:nuswide_21, MAP:0.833, Best MAP: 0.834
def get_config():
config = {
"alpha": 0.1,
# "p": 1,
"p": 2,
# "optimizer": {"type": optim.SGD, "epoch_lr_decrease": 50,
# "optim_params": {"lr": 0.1, "weight_decay": 5e-4, "momentum": 0.9}},
"optimizer": {"type": optim.RMSprop, "epoch_lr_decrease": 50,
"optim_params": {"lr": 1e-5, "weight_decay": 10 ** -5}},
"info": "[DBDH]",
"resize_size": 256,
"crop_size": 224,
"batch_size": 128,
"net": AlexNet,
# "net":ResNet,
# "dataset": "cifar10",
"dataset": "cifar10-1",
# "dataset": "cifar10-2",
# "dataset": "coco",
# "dataset": "mirflickr",
# "dataset": "voc2012",
# "dataset": "imagenet",
# "dataset": "nuswide_21",
# "dataset": "nuswide_21_m",
# "dataset": "nuswide_81_m",
"epoch": 150,
"test_map": 5,
"save_path": "save/DBDH",
# "device":torch.device("cpu"),
"device": torch.device("cuda:1"),
"bit_list": [48],
}
config = config_dataset(config)
return config
class DPSHLoss(torch.nn.Module):
def __init__(self, config, bit):
super(DPSHLoss, self).__init__()
self.U = torch.zeros(config["num_train"], bit).float().to(config["device"])
self.Y = torch.zeros(config["num_train"], config["n_class"]).float().to(config["device"])
def forward(self, u, y, ind, config):
u = u.clamp(min=-1, max=1)
self.U[ind, :] = u.data
self.Y[ind, :] = y.float()
s = (y @ self.Y.t() > 0).float()
inner_product = u @ self.U.t() * 0.5
likelihood_loss = (1 + (-(inner_product.abs())).exp()).log() + inner_product.clamp(min=0) - s * inner_product
likelihood_loss = likelihood_loss.mean()
if config["p"] == 1:
quantization_loss = config["alpha"] * u.mean(dim=1).abs().mean()
else:
quantization_loss = config["alpha"] * u.mean(dim=1).pow(2).mean()
return likelihood_loss + quantization_loss
def train_val(config, bit):
device = config["device"]
train_loader, test_loader, dataset_loader, num_train, num_test, num_dataset = get_data(config)
config["num_train"] = num_train
net = config["net"](bit).to(device)
optimizer = config["optimizer"]["type"](net.parameters(), **(config["optimizer"]["optim_params"]))
criterion = DPSHLoss(config, bit)
Best_mAP = 0
for epoch in range(config["epoch"]):
lr = config["optimizer"]["optim_params"]["lr"] * (0.1 ** (epoch // config["optimizer"]["epoch_lr_decrease"]))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
current_time = time.strftime('%H:%M:%S', time.localtime(time.time()))
print("%s[%2d/%2d][%s] bit:%d, dataset:%s, training...." % (
config["info"], epoch + 1, config["epoch"], current_time, bit, config["dataset"]), end="")
net.train()
train_loss = 0
for image, label, ind in train_loader:
image = image.to(device)
label = label.to(device)
optimizer.zero_grad()
u = net(image)
loss = criterion(u, label.float(), ind, config)
train_loss += loss.item()
loss.backward()
optimizer.step()
train_loss = train_loss / len(train_loader)
print("\b\b\b\b\b\b\b loss:%.3f" % (train_loss))
if (epoch + 1) % config["test_map"] == 0:
Best_mAP = validate(config, Best_mAP, test_loader, dataset_loader, net, bit, epoch, num_dataset)
if __name__ == "__main__":
config = get_config()
print(config)
for bit in config["bit_list"]:
train_val(config, bit)