|
| 1 | +import argparse |
| 2 | +import json |
| 3 | +import os |
| 4 | +import numpy as np |
| 5 | +from tqdm import tqdm |
| 6 | +import soundfile as sf |
| 7 | +import torch |
| 8 | +use_gpu = torch.cuda.is_available() |
| 9 | + |
| 10 | +import librosa |
| 11 | +from librosa.core import load |
| 12 | +from librosa.filters import mel as librosa_mel_fn |
| 13 | +mel_basis = librosa_mel_fn(22050, 1024, 80, 0, 8000) |
| 14 | + |
| 15 | +import params |
| 16 | +from model import DiffVC |
| 17 | + |
| 18 | +import sys |
| 19 | +sys.path.append('hifi-gan/') |
| 20 | +from env import AttrDict |
| 21 | +from models import Generator as HiFiGAN |
| 22 | + |
| 23 | +sys.path.append('speaker_encoder/') |
| 24 | +from encoder import inference as spk_encoder |
| 25 | +from pathlib import Path |
| 26 | + |
| 27 | + |
| 28 | +class Inferencer(): |
| 29 | + def __init__(self, generator, spk_encoder, hifigan_universal, output_path="./output_demo", use_gpu=False): |
| 30 | + |
| 31 | + self.generator = generator |
| 32 | + self.spk_encoder = spk_encoder |
| 33 | + self.hifigan_universal = hifigan_universal |
| 34 | + # if not os.path.isdir(output_path): |
| 35 | + # os.makedirs(output_path) |
| 36 | + |
| 37 | + self.output_path = output_path |
| 38 | + |
| 39 | + self.use_gpu = use_gpu |
| 40 | + |
| 41 | + |
| 42 | + def get_mel(self, wav_path): |
| 43 | + wav, _ = load(wav_path, sr=22050) |
| 44 | + wav = wav[:(wav.shape[0] // 256)*256] |
| 45 | + wav = np.pad(wav, 384, mode='reflect') |
| 46 | + stft = librosa.core.stft(wav, n_fft=1024, hop_length=256, win_length=1024, window='hann', center=False) |
| 47 | + stftm = np.sqrt(np.real(stft) ** 2 + np.imag(stft) ** 2 + (1e-9)) |
| 48 | + mel_spectrogram = np.matmul(mel_basis, stftm) |
| 49 | + log_mel_spectrogram = np.log(np.clip(mel_spectrogram, a_min=1e-5, a_max=None)) |
| 50 | + return log_mel_spectrogram |
| 51 | + |
| 52 | + def get_embed(self, wav_path): |
| 53 | + wav_preprocessed = spk_encoder.preprocess_wav(wav_path) |
| 54 | + embed = spk_encoder.embed_utterance(wav_preprocessed) |
| 55 | + return embed |
| 56 | + |
| 57 | + def noise_median_smoothing(self, x, w=5): |
| 58 | + y = np.copy(x) |
| 59 | + x = np.pad(x, w, "edge") |
| 60 | + for i in range(y.shape[0]): |
| 61 | + med = np.median(x[i:i+2*w+1]) |
| 62 | + y[i] = min(x[i+w+1], med) |
| 63 | + return y |
| 64 | + |
| 65 | + def mel_spectral_subtraction(self, mel_synth, mel_source, spectral_floor=0.02, silence_window=5, smoothing_window=5): |
| 66 | + mel_len = mel_source.shape[-1] |
| 67 | + energy_min = 100000.0 |
| 68 | + i_min = 0 |
| 69 | + for i in range(mel_len - silence_window): |
| 70 | + energy_cur = np.sum(np.exp(2.0 * mel_source[:, i:i+silence_window])) |
| 71 | + if energy_cur < energy_min: |
| 72 | + i_min = i |
| 73 | + energy_min = energy_cur |
| 74 | + estimated_noise_energy = np.min(np.exp(2.0 * mel_synth[:, i_min:i_min+silence_window]), axis=-1) |
| 75 | + if smoothing_window is not None: |
| 76 | + estimated_noise_energy = self.noise_median_smoothing(estimated_noise_energy, smoothing_window) |
| 77 | + mel_denoised = np.copy(mel_synth) |
| 78 | + for i in range(mel_len): |
| 79 | + signal_subtract_noise = np.exp(2.0 * mel_synth[:, i]) - estimated_noise_energy |
| 80 | + estimated_signal_energy = np.maximum(signal_subtract_noise, spectral_floor * estimated_noise_energy) |
| 81 | + mel_denoised[:, i] = np.log(np.sqrt(estimated_signal_energy)) |
| 82 | + return mel_denoised |
| 83 | + |
| 84 | + |
| 85 | + def infer(self, src_path, tgt_path, n_timesteps=30, return_output_path=False, sr=16000): |
| 86 | + |
| 87 | + source_basename = os.path.basename(src_path).split('.wav')[0] |
| 88 | + target_basename = os.path.basename(tgt_path).split('.wav')[0] |
| 89 | + output_basename = f'{source_basename}_to_{target_basename}' |
| 90 | + output_wav = os.path.join(self.output_path, output_basename+'.wav') |
| 91 | + |
| 92 | + mel_source = torch.from_numpy(self.get_mel(src_path)).float().unsqueeze(0) |
| 93 | + if self.use_gpu: |
| 94 | + mel_source = mel_source.cuda() |
| 95 | + mel_source_lengths = torch.LongTensor([mel_source.shape[-1]]) |
| 96 | + if self.use_gpu: |
| 97 | + mel_source_lengths = mel_source_lengths.cuda() |
| 98 | + |
| 99 | + mel_target = torch.from_numpy(self.get_mel(tgt_path)).float().unsqueeze(0) |
| 100 | + if self.use_gpu: |
| 101 | + mel_target = mel_target.cuda() |
| 102 | + mel_target_lengths = torch.LongTensor([mel_target.shape[-1]]) |
| 103 | + if self.use_gpu: |
| 104 | + mel_target_lengths = mel_target_lengths.cuda() |
| 105 | + |
| 106 | + embed_target = torch.from_numpy(self.get_embed(tgt_path)).float().unsqueeze(0) |
| 107 | + if self.use_gpu: |
| 108 | + embed_target = embed_target.cuda() |
| 109 | + |
| 110 | + |
| 111 | + # performing voice conversion |
| 112 | + mel_encoded, mel_ = self.generator.forward(mel_source, mel_source_lengths, mel_target, mel_target_lengths, embed_target, |
| 113 | + n_timesteps=n_timesteps, mode='ml') |
| 114 | + mel_synth_np = mel_.cpu().detach().squeeze().numpy() |
| 115 | + mel_source_np = mel_.cpu().detach().squeeze().numpy() |
| 116 | + mel = torch.from_numpy(self.mel_spectral_subtraction(mel_synth_np, mel_source_np, smoothing_window=1)).float().unsqueeze(0) |
| 117 | + if self.use_gpu: |
| 118 | + mel = mel.cuda() |
| 119 | + |
| 120 | + with torch.no_grad(): |
| 121 | + audio = self.hifigan_universal.forward(mel).cpu().squeeze().clamp(-1, 1) |
| 122 | + print(audio.shape) |
| 123 | + sf.write(f'{output_wav}', audio, sr) |
| 124 | + |
| 125 | + if return_output_path: |
| 126 | + return output_wav |
| 127 | + else: |
| 128 | + return audio |
| 129 | + |
0 commit comments