Skip to content

Commit 00671d4

Browse files
committed
change name
1 parent 5e53f92 commit 00671d4

File tree

2 files changed

+464
-0
lines changed

2 files changed

+464
-0
lines changed

inference.py

+129
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,129 @@
1+
import argparse
2+
import json
3+
import os
4+
import numpy as np
5+
from tqdm import tqdm
6+
import soundfile as sf
7+
import torch
8+
use_gpu = torch.cuda.is_available()
9+
10+
import librosa
11+
from librosa.core import load
12+
from librosa.filters import mel as librosa_mel_fn
13+
mel_basis = librosa_mel_fn(22050, 1024, 80, 0, 8000)
14+
15+
import params
16+
from model import DiffVC
17+
18+
import sys
19+
sys.path.append('hifi-gan/')
20+
from env import AttrDict
21+
from models import Generator as HiFiGAN
22+
23+
sys.path.append('speaker_encoder/')
24+
from encoder import inference as spk_encoder
25+
from pathlib import Path
26+
27+
28+
class Inferencer():
29+
def __init__(self, generator, spk_encoder, hifigan_universal, output_path="./output_demo", use_gpu=False):
30+
31+
self.generator = generator
32+
self.spk_encoder = spk_encoder
33+
self.hifigan_universal = hifigan_universal
34+
# if not os.path.isdir(output_path):
35+
# os.makedirs(output_path)
36+
37+
self.output_path = output_path
38+
39+
self.use_gpu = use_gpu
40+
41+
42+
def get_mel(self, wav_path):
43+
wav, _ = load(wav_path, sr=22050)
44+
wav = wav[:(wav.shape[0] // 256)*256]
45+
wav = np.pad(wav, 384, mode='reflect')
46+
stft = librosa.core.stft(wav, n_fft=1024, hop_length=256, win_length=1024, window='hann', center=False)
47+
stftm = np.sqrt(np.real(stft) ** 2 + np.imag(stft) ** 2 + (1e-9))
48+
mel_spectrogram = np.matmul(mel_basis, stftm)
49+
log_mel_spectrogram = np.log(np.clip(mel_spectrogram, a_min=1e-5, a_max=None))
50+
return log_mel_spectrogram
51+
52+
def get_embed(self, wav_path):
53+
wav_preprocessed = spk_encoder.preprocess_wav(wav_path)
54+
embed = spk_encoder.embed_utterance(wav_preprocessed)
55+
return embed
56+
57+
def noise_median_smoothing(self, x, w=5):
58+
y = np.copy(x)
59+
x = np.pad(x, w, "edge")
60+
for i in range(y.shape[0]):
61+
med = np.median(x[i:i+2*w+1])
62+
y[i] = min(x[i+w+1], med)
63+
return y
64+
65+
def mel_spectral_subtraction(self, mel_synth, mel_source, spectral_floor=0.02, silence_window=5, smoothing_window=5):
66+
mel_len = mel_source.shape[-1]
67+
energy_min = 100000.0
68+
i_min = 0
69+
for i in range(mel_len - silence_window):
70+
energy_cur = np.sum(np.exp(2.0 * mel_source[:, i:i+silence_window]))
71+
if energy_cur < energy_min:
72+
i_min = i
73+
energy_min = energy_cur
74+
estimated_noise_energy = np.min(np.exp(2.0 * mel_synth[:, i_min:i_min+silence_window]), axis=-1)
75+
if smoothing_window is not None:
76+
estimated_noise_energy = self.noise_median_smoothing(estimated_noise_energy, smoothing_window)
77+
mel_denoised = np.copy(mel_synth)
78+
for i in range(mel_len):
79+
signal_subtract_noise = np.exp(2.0 * mel_synth[:, i]) - estimated_noise_energy
80+
estimated_signal_energy = np.maximum(signal_subtract_noise, spectral_floor * estimated_noise_energy)
81+
mel_denoised[:, i] = np.log(np.sqrt(estimated_signal_energy))
82+
return mel_denoised
83+
84+
85+
def infer(self, src_path, tgt_path, n_timesteps=30, return_output_path=False, sr=16000):
86+
87+
source_basename = os.path.basename(src_path).split('.wav')[0]
88+
target_basename = os.path.basename(tgt_path).split('.wav')[0]
89+
output_basename = f'{source_basename}_to_{target_basename}'
90+
output_wav = os.path.join(self.output_path, output_basename+'.wav')
91+
92+
mel_source = torch.from_numpy(self.get_mel(src_path)).float().unsqueeze(0)
93+
if self.use_gpu:
94+
mel_source = mel_source.cuda()
95+
mel_source_lengths = torch.LongTensor([mel_source.shape[-1]])
96+
if self.use_gpu:
97+
mel_source_lengths = mel_source_lengths.cuda()
98+
99+
mel_target = torch.from_numpy(self.get_mel(tgt_path)).float().unsqueeze(0)
100+
if self.use_gpu:
101+
mel_target = mel_target.cuda()
102+
mel_target_lengths = torch.LongTensor([mel_target.shape[-1]])
103+
if self.use_gpu:
104+
mel_target_lengths = mel_target_lengths.cuda()
105+
106+
embed_target = torch.from_numpy(self.get_embed(tgt_path)).float().unsqueeze(0)
107+
if self.use_gpu:
108+
embed_target = embed_target.cuda()
109+
110+
111+
# performing voice conversion
112+
mel_encoded, mel_ = self.generator.forward(mel_source, mel_source_lengths, mel_target, mel_target_lengths, embed_target,
113+
n_timesteps=n_timesteps, mode='ml')
114+
mel_synth_np = mel_.cpu().detach().squeeze().numpy()
115+
mel_source_np = mel_.cpu().detach().squeeze().numpy()
116+
mel = torch.from_numpy(self.mel_spectral_subtraction(mel_synth_np, mel_source_np, smoothing_window=1)).float().unsqueeze(0)
117+
if self.use_gpu:
118+
mel = mel.cuda()
119+
120+
with torch.no_grad():
121+
audio = self.hifigan_universal.forward(mel).cpu().squeeze().clamp(-1, 1)
122+
print(audio.shape)
123+
sf.write(f'{output_wav}', audio, sr)
124+
125+
if return_output_path:
126+
return output_wav
127+
else:
128+
return audio
129+

inference_pipeline.ipynb

+335
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)