A living, community-driven encyclopedia of artificial intelligence knowledge, accessible to everyone from beginners to experts.
The AI field evolves at lightning speed. Keeping up can feel impossible. The Grand AI Handbook solves this problem by providing:
- Structured knowledge paths that grow with your expertise
- Curated research highlights that distill complex papers into practical insights
- Career-focused roadmaps that guide your professional development
- Hands-on projects that reinforce theoretical concepts
- Up-to-date resources maintained by the community
"We're building the resource we wish existed when we started our AI journeys."
Our domain-specific handbooks provide depth and clarity on the most important areas of AI:
Handbook | What You'll Learn | Why It Matters |
---|---|---|
💡 Generative AI |
• Foundation models & LLMs • Diffusion & latent space models • Prompt engineering techniques • Fine-tuning methodologies • Multimodal architectures |
Generative AI is transforming creative workflows, content creation, and information access. Understanding these models unlocks a new frontier of AI applications. |
🔤 NLP |
• Transformer architectures • Semantic embeddings • Language understanding • Text generation techniques • Multilingual processing |
NLP powers everything from search to translation to intelligent assistants. These techniques enable machines to understand and generate human language. |
👁️ Computer Vision |
• Object detection & tracking • Image segmentation • Feature extraction • Neural architectures (CNNs, ViTs) • 3D vision & depth estimation |
Computer vision enables machines to understand visual data, driving innovations in autonomous vehicles, medical imaging, augmented reality, and robotics. |
🎮 Reinforcement Learning |
• Policy gradients & optimization • Q-learning & DQN • Actor-critic methods • Multi-agent systems • Simulation environments |
RL creates systems that learn through exploration and feedback, enabling advances in robotics, game AI, recommendation systems, and adaptive control. |
Each handbook follows a consistent learning path:
- Fundamentals: Core concepts for solid foundations
- Techniques: Practical methods with code examples
- Architectures: Understanding model designs
- Applications: Real-world implementation guides
- Advanced Topics: Cutting-edge developments
We curate the most impactful AI research and make it accessible:
- Weekly Research Digests: Key papers from top conferences (NeurIPS, ICML, ICLR, ACL, CVPR)
- Practical Summaries: Focus on applications and implications, not just theory
- Implementation Guides: Bridging research to practice with code walkthroughs
- Trend Analysis: Identifying emerging directions in AI research
Our research coverage includes:
Research Area | What We Track | Why It's Important |
---|---|---|
Foundation Models | Scaling laws, training methods, capabilities | Driving the next generation of AI systems |
Efficiency | Distillation, pruning, quantization | Making advanced AI more accessible |
Human Alignment | RLHF, constitutional AI, safety | Ensuring AI systems are beneficial |
Multimodal Learning | Vision-language models, audio-visual systems | Enabling richer AI understanding |
Building and deploying production-ready AI systems Key milestones:
|
Advancing the state-of-the-art in machine learning Key milestones:
|
Transforming data into business insights Key milestones:
|
Each roadmap includes:
- 📈 Skill progression charts
- 🎓 Recommended learning resources
- 💻 Essential projects for your portfolio
- 🔄 Regular updates reflecting industry demands
- 👔 Interview and job search guidance
Learn by doing with our curated projects and resources:
Level | Project Examples | Skills Developed |
---|---|---|
Beginner | Text classifier, Image recognition, Data visualization | Core ML concepts, Data handling, Evaluation metrics |
Intermediate | Recommendation system, Style transfer, Chatbot | Model architecture, Hyperparameter tuning, System design |
Advanced | Fine-tuning LLMs, Multi-modal models, Reinforcement learning agents | Advanced architectures, Research implementation, System optimization |
|
|
|
|
Our news section helps you navigate the rapidly evolving AI landscape:
- Weekly Digests: Summarized developments from industry and academia
- Impact Analysis: How new breakthroughs affect different sectors
- Trend Tracking: Identifying patterns in AI development
- Ethical Perspectives: Coverage of governance, regulation, and societal impact
📂 grandaihandbook.github.io/
│
├── # 🔧 Site Configuration
│ ├── 📜 _config.yml
│ ├── 📜 Gemfile
│ ├── 📜 .gitignore
│ ├── 📜 CNAME
│ ├── 📜 robots.txt
│ ├── 📜 sitemap.xml
│
├── # 🧩 Site Architecture
│ ├── 📂 _data/
│ │ ├── 📜 navigation.yml
│ │ ├── 📜 contributors.yml
│ │ ├── 📜 resources.yml
│ │ ├── 📜 glossary.yml
│ │ └── 📜 metadata.yml
│ │
│ ├── 📂 _includes/
│ │ ├── 📜 header.html
│ │ ├── 📜 footer.html
│ │ ├── 📜 newsletter-signup.html
│ │ ├── 📜 resource-card.html
│ │ ├── 📜 toc.html
│ │ ├── 📜 related-content.html
│ │ └── 📜 author-bio.html
│ │
│ ├── 📂 _layouts/
│ │ ├── 📜 default.html
│ │ ├── 📜 handbook.html
│ │ ├── 📜 roadmap.html
│ │ ├── 📜 project.html
│ │ ├── 📜 research.html
│ │ └── 📜 resource.html
│ │
│ ├── 📂 _plugins/
│ │ ├── 📜 reading-time.rb
│ │ └── 📜 related-content.rb
│ │
│ ├── 📂 assets/
│ │ ├── 📂 css/
│ │ ├── 📂 js/
│ │ ├── 📂 images/
│ │ │ ├── 📂 logos/
│ │ │ ├── 📂 icons/
│ │ │ └── 📂 diagrams/
│ │ └── 📂 fonts/
│
├── # 📄 Content
│ ├── 📂 content/
│ │ │
│ │ ├── # 📚 AI Handbooks
│ │ ├── 📂 handbooks/
│ │ │ ├── 📂 generative-ai/
│ │ │ ├── 📂 nlp/
│ │ │ ├── 📂 computer-vision/
│ │ │ └── 📂 reinforcement-learning/
│ │ │
│ │ ├── # 📰 AI Research & News
│ │ ├── 📂 research/
│ │ │ ├── 📂 papers-of-the-week/
│ │ │ └── 📂 trending-papers/
│ │ │
│ │ ├── 📂 news/
│ │ │ └── 📂 ai-news/
│ │ │
│ │ ├── # 🛠️ AI Ecosystem
│ │ ├── 📂 ecosystem/
│ │ │ ├── 📂 models/
│ │ │ ├── 📂 libraries/
│ │ │ ├── 📂 benchmarks/
│ │ │ └── 📂 competitions/
│ │ │
│ │ ├── # 🏆 AI Learning Roadmaps
│ │ ├── 📂 roadmaps/
│ │ │ ├── 📂 ai-engineer/
│ │ │ ├── 📂 ml-researcher/
│ │ │ └── 📂 data-scientist/
│ │ │
│ │ ├── # 🔥 AI Projects
│ │ ├── 📂 projects/
│ │ │ ├── 📂 beginner/
│ │ │ ├── 📂 intermediate/
│ │ │ └── 📂 advanced/
│ │ │
│ │ ├── # 📖 AI Resources
│ │ ├── 📂 resources/
│ │ │ ├── 📂 books/
│ │ │ ├── 📂 datasets/
│ │ │ ├── 📂 tools/
│ │ │ └── 📂 cheatsheets/
│ │ │
│ │ ├── # 🚀 AI Career & Opportunities
│ │ ├── 📂 opportunities/
│ │ │ ├── 📂 conferences/
│ │ │ ├── 📂 scholarships/
│ │ │ ├── 📂 fellowships/
│ │ │ └── 📂 grants/
│ │ │
│ │ ├── # 📊 Case Studies & Applications
│ │ ├── 📂 case-studies/
│ │ │ ├── 📂 industry/
│ │ │ └── 📂 research/
│ │ │
│ │ ├── # 🤔 AI Ethics & Responsibility
│ │ ├── 📂 ethics/
│ │ │
│ │ ├── # 🧑🤝🧑 Community
│ │ ├── 📂 community/
│ │ │
│ │ ├── # 📝 Interactive Learning
│ │ ├── 📂 interactive/
│ │ │ ├── 📂 tutorials/
│ │ │ ├── 📂 quizzes/
│ │ │ └── 📂 challenges/
│ │ │
│ │ ├── # 🔍 Search & Navigation
│ │ ├── 📜 search.md
│ │ ├── 📜 glossary.md
│ │ ├── 📜 sitemap.md
│ │ └── 📜 404.md
│
├── # ✅ GitHub & Contribution
│ ├── 📂 .github/
│ │ ├── 📂 ISSUE_TEMPLATE/
│ │ ├── 📂 workflows/
│ │ └── 📜 PULL_REQUEST_TEMPLATE.md
│ │
│ ├── 📜 README.md
│ ├── 📜 CONTRIBUTING.md
│ ├── 📜 CODE_OF_CONDUCT.md
│ └── 📜 LICENSE
Built with:
- Jekyll: Static site generator that powers the site
- Liquid: Template engine for dynamic content
- SCSS: For maintainable styling
- JavaScript: For interactive components
- GitHub Actions: For automated builds and deployments
The Grand AI Handbook thrives on community contributions. Join us to:
- Learn from other AI practitioners
- Share your knowledge and experiences
- Collaborate on improving resources
- Network with like-minded professionals
- Stay current with AI developments
We welcome contributions of all sizes, from fixing typos to adding entire new sections. Here's how:
|
|
For detailed guidelines, see CONTRIBUTING.md.
If you find The Grand AI Handbook valuable, here's how you can help:
- Star the repository to show your support and help others discover it
- Share with colleagues and on social media to expand our community
- Report issues to help us improve the quality of content
- Contribute content to fill gaps and keep information current
- Provide feedback on what you'd like to see next
This project is licensed under the MIT License - see the LICENSE file for details.